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The aldol process constitutes one of the most fundamental 
bond constructions in organic synthesis.1 Therefore, the devel­
opment of chiral catalysts that promote asymmetric aldol reactions 
in a highly stereocontrolled fashion has attracted much attention.2 

In the course of studies on the asymmetric catalysis of the 
Mukaiyama aldol reaction (the Lewis acid-promoted carbonyl 
addition of silyl enol ethers of ketones),3 we made the unanticipated 
observation that aldol products were obtained exclusively as the 
silyl enol ether (ene-type product)4 form by the catalysis of a 
chiral binaphthol-derived titanium dichloride (BINOL-Ti, 1) 
(Scheme I).5 The stereochemical and mechanistic features of 
the ene-type aldol reaction are the subject of this communication. 

The reaction was carried out by adding the trimethylsilyl enol 
ether 2 of ketone and glyoxylate ester 3 at 0 0C to a dichlo-
romethane solution containing S mol % of the chiral titanium 
dichloride 1, prepared from (£)-binaphthol and diisopropoxyti-
tanium dichloride as previously reported.6 The reaction was 
completed within 30 min as determined by TLC monitoring.7 

Careful hydrolytic workup8 with saturated sodium bicarbonate 
at 0 0C afforded the aldol product as the trimethylsilyl enol ether 
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Table L BINOL-Ti (l)-Catalyzed Aldol Reactions of Ketone Silyl 
Enol Ethers with Glyoxylates" 

yield % eC 
entry silyl ethers R3 (%) syn/anti'' (Z)l(E)b (config) 
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84/16 
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99(/J) 
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>99 (R) 

>99 (R) 
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" Conditions as in text. * The isomeric ratio was determined by analysis 
of 300-MHz 1H NMR spectra.c The values correspond to the major 
isomers. '(E)I(Z) = 14/86.«(E)I(Z) = 73/27. f (E)I(Z) - 10/90. 
'Cl2Ti(OPhBr-P)2 was used instead of 1. * Me3Al was used. 

form 4. Flash column chromatography gave the silyl enol ether 
product 4 as the sole stereoisomer.9'10 The enantiomeric purity 
of the product was determined to be almost perfect (99% ee) by 
1H NMR (300 MHz) spectral analysis of the (SH-)- and (R)-
(+)-MTPA ester derivatives of the /3-hydroxy ketone obtained 
on hydrolysis of 4 (Table I, entry I).11 
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value with that of authentic (R)-ketone obtained from the (2R)-glyoxylate 
ene product via ozonolysis as shown below. Thus, the sense of asymmetric 
induction in the aldol reaction is consistent with that previously observed in 
the glyoxylate ene reaction;' (R)-I provides the (2R) products. 
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This asymmetric catalytic aldol reaction is characterized by 
the exclusive ene regioselectivity and unique stereoselectivity. 
The (Z) (namely, *ra«j)-silyl enol ether is formed with high 
stereoselectivity (entries 1-3 and 8).4,12'13 The jyn-diastereomer 
is formed with high selectivity from either isomer of the starting 
trimethylsilyl enol ethers (entries 1-3).14 This .syn-selectivity is 
analogous to that observed in the alkylaluminum triflate-promoted 
glyoxylate ene reaction with trans- and cii-2-butene.15 This 

(12) The (Z)-geometry was confirmed by 13C NMR analysis through 
comparison with the (£)-isomer obtained with MejAl as the Lewis acid (e.g., 
entry 9); the C-3 of the (Z)-isomer absorbs downfield from that of the (E)-
diastereomer (see ref lb). 
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suggests that the present reaction also proceeds through mon-
odentate complex A via cyclic transition states (Scheme 1I).4*-15 
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Thus, the decrease in sjrj-diastereoselectivity with the more bulky 
/erf-butyldimethylsilyl ether (entry 4) would be due to developing 
1,3-diaxial repulsion with the axial ester moiety in the (Z)-ax-
transition state. The more Lewis acidic titanium bis(p-bro-
mophenoxide) gave a 1:1 diastereomer mixture (entry 5). The 
anfi'-diastereomer might be formed via the bidentate complex 
B, 4a, 15 

In summary, we have discovered that the Mukaiyama aldol 
reactions of ketone silyl enol ethers with glyoxylate esters catalyzed 
by titanium complex 1 afford ene-type products with control of 
absolute and relative stereochemistry. The formation of ene-
type products is also observed with a-benzyloxy aldehydes.16 The 
ene process has not been previously considered as a possible 
mechanism in the Mukaiyama aldol reactions. This mechanism 
provides, however, another rationale for the .ryn-diastereoselection 
irrespective of the starting silyl ether geometry.17 Further studies 
along these lines are now underway in our laboratory. 
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